The generator matrix

 1  0  0  1  1  1  1  1  1  6  1  1 X+6  1 2X+3  1 2X  1 X+3  1 2X  1  1  1  1  1  1  1  1  1  1  1  1  0  3 2X  1  1  1  X 2X+6  1  1  0 2X+3  1  1  1  X  1  1  1  1  3  1 X+6 2X  1  1  1
 0  1  0  6  1  7  5  X  8  1 2X+7 2X+5  1 X+3  1 2X X+6 2X+1  1  5  1 X+5 X+2 X+6 2X+8 2X+6  4 X+7  6 X+1 2X+8 X+8  1  X  1  1 X+4  3  X  1  1 2X+7 2X+3  1  1 2X+6 2X+5 X+2  1 2X X+6 2X+3  4  1 X+5  0  6  X X+4  5
 0  0  1 2X+7 2X+1  6 X+2 X+8 2X  1 2X+5  7  5 2X+3 X+6  4  1 2X+4 X+4 2X+8 2X+5  7 2X X+3 2X+3 X+8 X+6 2X+2  4 X+4 X+3  2  8  1 X+7  0  3 2X+3 2X+2 2X+7 X+8  5 2X+8  5 2X+6 X+7 X+4 X+2 X+8 2X 2X+4  6 X+8 2X+6 2X+7  1  1 X+2 X+8 2X+2

generates a code of length 60 over Z9[X]/(X^2+6,3X) who�s minimum homogenous weight is 114.

Homogenous weight enumerator: w(x)=1x^0+744x^114+1050x^115+1788x^116+2166x^117+1668x^118+1944x^119+2226x^120+1356x^121+1734x^122+1570x^123+960x^124+828x^125+878x^126+462x^127+186x^128+84x^129+20x^132+12x^133+6x^138

The gray image is a code over GF(3) with n=540, k=9 and d=342.
This code was found by Heurico 1.16 in 0.8 seconds.